Contact Information
805 W Pennsylvania Ave, Room 306
Urbana, IL 61801
Research Areas
Research Description
Symplectic geometry and topology, Floer theory, and homological mirror symmetry.
Education
Ph.D. Mathematics, MIT, 2011
External Links
Recent Publications
Pascaleff, J. (2024). REMARKS ON THE EQUIVALENCE BETWEEN DIFFERENTIAL GRADED CATEGORIES AND A-INFINITY CATEGORIES. Homology, Homotopy and Applications, 26(1), 275-285. https://doi.org/10.4310/HHA.2024.V26.N1.A17
Pascaleff, J., & Tonkonog, D. (2020). The wall-crossing formula and Lagrangian mutations. Advances in Mathematics, 361, Article 106850. https://doi.org/10.1016/j.aim.2019.106850
Pascaleff, J., & Sibilla, N. (2019). Topological Fukaya category and mirror symmetry for punctured surfaces. Compositio Mathematica, 155(3), 599-644. https://doi.org/10.1112/S0010437X19007073
Lekili, Y., & Pascaleff, J. (2016). Floer cohomology of g-equivariant Lagrangian branes. Compositio Mathematica, 152(5), 1071-1110. https://doi.org/10.1112/S0010437X1500771X
Pascaleff, J. (2014). Floer cohomology in the mirror of the projective plane and a binodal cubic curve. Duke Mathematical Journal, 163(13), 2427-2516. https://doi.org/10.1215/00127094-2804892